Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 273: 125841, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460421

RESUMO

The approach based on a combination of isothermal recombinase polymerase amplification (RPA), 2'-deoxyuridine-5'-triphosphate modified with tyrosine aromatic group (dUTP-Y1), and direct voltammetric detection of RPA product carrying electroactive labels was successfully applied to the potato pathogen Dickeya solani. The artificial nucleotide dUTP-Y1 demonstrated a good compatibility with RPA, enabling by targeting a section of D. solani genome with a unique sequence to produce the full-size modified products at high levels of substitution of dTTP by dUTP-Y1 (up to 80-90 %) in the reaction mixture. The optimized procedure of square wave voltammetry allowed to reliably detect the product generated by RPA at 80 % substitution of dTTP by dUTP-Y1 (dsDNA-Y1) in microliter sample volumes on the surface of disposable carbon screen printed electrodes at the potential of about 0.6 V. The calibration curve for the amplicon detection was linear in coordinates 'Ip, A vs. Log (c, M)' within the 0.05-1 µM concentration range. The limit of detection for dsDNA-Y1 was estimated as 8 nM. The sensitivity of the established electrochemical approach allowed to detect amplicons generated in a single standard 50 µL RPA reaction after their purification with silica-coated magnetic beads. The overall detectability of D. solani with the suggested combination of RPA and voltammetric registration of dsDNA-Y1 can be as low as a few copies of bacterial genome per standard reaction. In total, amplification, purification, and electrochemical detection take about 120-150 min. Considering the potential of direct electrochemical analysis for miniaturization, as well as compliance with low-cost and low-power requirements, the findings provide grounds for future development of microfluidic devices integrating isothermal amplification, amplicon purification and detection based on the tyrosine modified nucleotide for the purpose of 'on-site' detection of various pathogens.


Assuntos
Dickeya , Polifosfatos , Recombinases , Solanum tuberosum , DNA , Enterobacteriaceae , Nucleotídeos , Desoxiuridina , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade
2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474041

RESUMO

Dickeya solani, belonging to the Soft Rot Pectobacteriaceae, are aggressive necrotrophs, exhibiting both a wide geographic distribution and a wide host range that includes many angiosperm orders, both dicot and monocot plants, cultivated under all climatic conditions. Little is known about the infection strategies D. solani employs to infect hosts other than potato (Solanum tuberosum L.). Our earlier study identified D. solani Tn5 mutants induced exclusively by the presence of the weed host S. dulcamara. The current study assessed the identity and virulence contribution of the selected genes mutated by the Tn5 insertions and induced by the presence of S. dulcamara. These genes encode proteins with functions linked to polyketide antibiotics and polysaccharide synthesis, membrane transport, stress response, and sugar and amino acid metabolism. Eight of these genes, encoding UvrY (GacA), tRNA guanosine transglycosylase Tgt, LPS-related WbeA, capsular biosynthesis protein VpsM, DltB alanine export protein, glycosyltransferase, putative transcription regulator YheO/PAS domain-containing protein, and a hypothetical protein, were required for virulence on S. dulcamara plants. The implications of D. solani interaction with a weed host, S. dulcamara, are discussed.


Assuntos
Solanum tuberosum , Solanum , Solanum/genética , Dickeya/genética , Solanum tuberosum/genética , Enterobacteriaceae/genética , Loci Gênicos , Doenças das Plantas
3.
Sci Rep ; 14(1): 2614, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297010

RESUMO

Maize (Zea mays) is an influential crop in its production across the world. However, the invasion of many phytopathogens greatly affects the maize crop yield at various hotspot areas. Of many diseases, bacterial stalk rot of maize caused by Dickeya zeae results in severe yield reduction, thus the need for efficient management is important. Further, to produce epidemiological information for control of disease outbreaks in the hot spot regions of Sialkot District, Punjab Pakistan, extensive field surveys during 2021 showed that out of 266 visited areas, the highest disease incidence ranging from 66.5 to 78.5% while the lowest incidence was ranging from 9 to 20%. The Maxent modeling revealed that among 19 environmental variables, four variables including temperature seasonality (bio-4), mean temperature of the wettest quarter (bio-8), annual precipitation (bio-12), and precipitation of driest month (bio-14) were significantly contributing to disease distribution in current and coming years. The study outcomes revealed that disease spread will likely increase across four tehsils of Sialkot over the years 2050 and 2070. Our findings will be helpful to policymakers and researchers in devising effective disease management strategies against bacterial stalk rot of maize outbreaks in Sialkot, Pakistan.


Assuntos
Mudança Climática , Dickeya , Zea mays , Zea mays/microbiologia , Paquistão , Doenças das Plantas/microbiologia , Enterobacteriaceae
4.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255830

RESUMO

Svx proteins are virulence factors secreted by phytopathogenic bacteria of the Pectobacterium genus into the host plant cell wall. Svx-encoding genes are present in almost all species of the soft rot Pectobacteriaceae (Pectobacterium and Dickeya genera). The Svx of P. atrosepticum (Pba) has been shown to be a gluzincin metallopeptidase that presumably targets plant extensins, proteins that contribute to plant cell wall rigidity and participate in cell signaling. However, the particular "output" of the Pba Svx action in terms of plant-pathogen interactions and plant immune responses remained unknown. The Svx proteins are largely unexplored in Dickeya species, even though some of them have genes encoding two Svx homologs. Therefore, our study aims to compare the structural and catalytic properties of the Svx proteins of Pba and D. solani (Dso) and to test the phytoimmune properties of these proteins. Two assayed Dso Svx proteins, similar to Pba Svx, were gluzincin metallopeptidases with conservative tertiary structures. The two domains of the Svx proteins form electronegative clefts where the active centers of the peptidase domains are located. All three assayed Svx proteins possessed phytoimmunosuppressory properties and induced ethylene-mediated plant susceptible responses that play a decisive role in Pba-caused disease.


Assuntos
Bactérias , Peptídeo Hidrolases , Bioensaio , Transporte Biológico , Catálise , Dickeya
5.
Syst Appl Microbiol ; 47(1): 126476, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113702

RESUMO

Outbreaks of potato blackleg and soft rot caused by Pectobacterium species and more recently Dickeya species across the U.S. mid-Atlantic region have caused yield loss due to poor emergence as well as losses from stem and tuber rot. To develop management strategies for soft rot diseases, we must first identify which members of the soft rot Pectobacteriaceae are present in regional potato plantings. However, the rapidly expanding number of soft rot Pectobacteriaceae species and the lack of readily available comparative data for type strains of Pectobacterium and Dickeya hinder quick identification. This manuscript provides a comparative analysis of soft rot Pectobacteriaceae and a comprehensive comparison of type strains from this group using rep-PCR, MLSA and 16S sequence analysis, as well as phenotypic and physiological analyses using Biolog GEN III plates. These data were used to identify isolates cultured from symptomatic potato stems collected between 2016 and 2018. The isolates were characterized for phenotypic traits and by sequence analysis to identify the bacteria from potatoes with blackleg and soft rot symptoms in Pennsylvania potato fields. In this survey, P. actinidiae, P. brasiliense, P. polonicum, P. polaris, P. punjabense, P. parmentieri, and P. versatile were identified from Pennsylvania for the first time. Importantly, the presence of P. actinidiae in Pennsylvania represents the first report of this organism in the U.S. As expected, P. carotorvorum and D. dianthicola were also isolated. In addition to a resource for future work studying the Dickeya and Pectobacterium associated with potato blackleg and soft rot, we provide recommendations for future surveys to monitor for quarantine or emerging soft rot Pectobacteriace regionally.


Assuntos
Gammaproteobacteria , Pectobacterium , Solanum tuberosum , Dickeya , Solanum tuberosum/microbiologia , Pennsylvania , Doenças das Plantas/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Pectobacterium/genética , Gammaproteobacteria/fisiologia
6.
Int J Mol Sci ; 24(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38139383

RESUMO

Bacterial diversity analyses often suffer from a bias due to sampling only from a limited number of hosts or narrow geographic locations. This was the case for the phytopathogenic species Dickeya solani, whose members were mainly isolated from a few hosts-potato and ornamentals-and from the same geographical area-Europe and Israel, which are connected by seed trade. Most D. solani members were clonal with the notable exception of the potato isolate RNS05.1.2A and two related strains that are clearly distinct from other D. solani genomes. To investigate if D. solani genomic diversity might be broadened by analysis of strains isolated from other environments, we analysed new strains isolated from ornamentals and from river water as well as strain CFBP 5647 isolated from tomato in the Caribbean island Guadeloupe. While water strains were clonal to RNS05.1.2A, the Caribbean tomato strain formed a third clade. The genomes of the three clades are highly syntenic; they shared almost 3900 protein families, and clade-specific genes were mainly included in genomic islands of extrachromosomal origin. Our study thus revealed both broader D. solani diversity with the characterisation of a third clade isolated in Latin America and a very high genomic conservation between clade members.


Assuntos
Dickeya , Enterobacteriaceae , Enterobacteriaceae/genética , Genômica , Água/metabolismo
7.
Sci Rep ; 13(1): 18863, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914755

RESUMO

Dickeya solani is an economically significant pectinolytic phytopathogen belonging to the Pectobacteriaceae family, which causes soft rot and blackleg diseases. Despite its notable impact on global potato production, there are no effective methods to control this pest. Here, we undertook a phyloproteomic study on 20 D. solani strains, of various origin and year of isolation, with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) supported by an in-depth characterization of the strains in terms of the virulence-associated phenotype. In spite of high homogeneity in this species, we herein revealed for the first time intraspecies variation in the MALDI-TOF MS protein profiles among the studied D. solani isolates. Finally, representative mass spectra for the four delineated clades are presented. A majority of the analysed D. solani strains showed high virulence potential, while two strains stood out in their growth dynamics, virulence factors production and ability to macerate plant tissue. Nonetheless, the metabolic profiles of D. solani strains turned out to be uniform, except for gelatinase activity. Given that all D. solani isolates distinctly grouped from the other Dickeya species in the MALDI-TOF MS analysis, there is strong evidence supporting the potential routine use of this method for fast and reliable to-species identification of D. solani isolates of environmental origin.


Assuntos
Enterobacteriaceae , Gammaproteobacteria , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Enterobacteriaceae/genética , Dickeya
8.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834112

RESUMO

The YopJ group of acetylating effectors from phytopathogens of the genera Pseudomonas and Ralstonia have been widely studied to understand how they modify and suppress their host defence targets. In contrast, studies on a related group of effectors, the Eop1 group, lag far behind. Members of the Eop1 group are widely present in the Erwinia-Pantoea clade of Gram-negative bacteria, which contains phytopathogens, non-pathogens and potential biocontrol agents, implying that they may play an important role in agroecological or pathological adaptations. The lack of research in this group of YopJ effectors has left a significant knowledge gap in their functioning and role. For the first time, we perform a comparative analysis combining AlphaFold modelling, in planta transient expressions and targeted mutational analyses of the Eop1 group effectors from the Erwinia-Pantoea clade, to help elucidate their likely activity and mechanism(s). This integrated study revealed several new findings, including putative binding sites for inositol hexakisphosphate and acetyl coenzyme A and newly postulated target-binding domains, and raises questions about whether these effectors function through a catalytic triad mechanism. The results imply that some Eop1s may use a catalytic dyad acetylation mechanism that we found could be promoted by the electronegative environment around the active site.


Assuntos
Erwinia amylovora , Erwinia , Pantoea , Pseudomonas , Dickeya , Acetilcoenzima A , Doenças das Plantas/microbiologia
9.
Microb Biotechnol ; 16(11): 2145-2160, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37815509

RESUMO

Virulence factor modulating (VFM) is a quorum sensing (QS) signal shared by and specific to Dickeya bacteria, regulating the production of plant cell wall degrading enzymes (PCWDEs) and virulence of Dickeya. High polarity and trace of VFM signal increase the difficulty of signal separation and structure identification, and thus limit the development of quorum quenching strategy to biocontrol bacterial soft rot diseases caused by Dickeya. In order to high-throughput screen VFM quenching bacteria, a vfmE-gfp biosensor VR2 (VFM Reporter) sensitive to VFM signal was first constructed. Subsequently, two bacterial strains with high quenching efficiency were screened out by fluorescence intensity measurement and identified as Pseudomonas chlororaphis L5 and Enterobacter asburiae L95 using multilocus sequence analysis (MLSA). L5 and L95 supernatants reduced the expression of vfm genes, and both strains also decreased the production of PCWDEs of D. zeae MS2 and significantly reduced the virulence of D. oryzae EC1 on rice seedlings, D. zeae MS2 on banana seedlings, D. dadantii 3937 on potato and D. fangzhongdai CL3 on taro. Findings in this study provide a method to high-throughput screen VFM quenching bacteria and characterize novel functions of P. chlororaphis and E. asburiae in biocontrolling plant diseases through quenching VFM QS signal.


Assuntos
Pseudomonas chlororaphis , Fatores de Virulência , Fatores de Virulência/genética , Dickeya/metabolismo , Percepção de Quorum , Pseudomonas chlororaphis/metabolismo , Enterobacteriaceae , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
10.
Molecules ; 28(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687036

RESUMO

Soft rot Pectobacteriaceae (SRP), such as Pectobacterium and Dickeya, are phytopathogenic agents responsible for blackleg disease on several crops, such as potatoes, affecting the yield and depressing the seed production quality. However, neither conventional nor biocontrol products are available on the market to control this disease. In this study Pseudomonas PA14H7, a bacteria isolated from potato rhizosphere, was selected as a potential antagonist agent against Dickeya solani. In order to understand the mechanism involved in this antagonism, we managed to identify the main active molecule(s) produced by PA14H7. Cell-free supernatant (CFS) of PA14H7 cultures were extracted and analyzed using LC-MS, GC-MS, and NMR. We further correlated the biological activity against Dickeya solani of extracted CFS-PA14H7 to the presence of 7-hydroxytropolone (7-HT) complexed with iron. In a second time, we have synthesized this molecule and determined accurately using LC-UV, LC-MS, and GC-MS that, after 48 h incubation, PA14H7 released, in its CFS, around 9 mg/L of 7-HT. The biological activities of CFS-PA14H7 vs. synthetic 7-HT, at this concentration, were evaluated to have a similar bacteriostatic effect on the growth of Dickeya solani. Even if 7-HT is produced by other Pseudomonas species and is mostly known for its antibacterial and antifungal activities, this is the first description of its involvement as an effective molecule against pectinolytic bacteria. Our work opens the way for the comprehension of the mode of action of PA14H7 as a biocontrol agent against potato blackleg.


Assuntos
Infecções por Clostridium , Solanum tuberosum , Dickeya , Enterobacteriaceae , Ferro
11.
PLoS One ; 18(9): e0291492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37708115

RESUMO

Average Nucleotide Identity (ANI) is becoming a standard measure for bacterial species delimitation. However, its calculation can take orders of magnitude longer than similarity estimates based on sampling of short nucleotides, compiled into so-called sketches. These estimates are widely used. However, their variable correlation with ANI has suggested that they might not be as accurate. For a where-the-rubber-meets-the-road assessment, we compared two sketching programs, mash and dashing, against ANI, in delimiting species among Esterobacterales genomes. Receiver Operating Characteristic (ROC) analysis found Area Under the Curve (AUC) values of 0.99, almost perfect species discrimination for all three measures. Subsampling to avoid over-represented species reduced these AUC values to 0.92, still highly accurate. Focused tests with ten genera, each represented by more than three species, also showed almost identical results for all methods. Shigella showed the lowest AUC values (0.68), followed by Citrobacter (0.80). All other genera, Dickeya, Enterobacter, Escherichia, Klebsiella, Pectobacterium, Proteus, Providencia and Yersinia, produced AUC values above 0.90. The species delimitation thresholds varied, with species distance ranges in a few genera overlapping the genus ranges of other genera. Mash was able to separate the E. coli + Shigella complex into 25 apparent phylogroups, four of them corresponding, roughly, to the four Shigella species represented in the data. Our results suggest that fast estimates of genome similarity are as good as ANI for species delimitation. Therefore, these estimates might suffice for covering the role of genomic similarity in bacterial taxonomy, and should increase confidence in their use for efficient bacterial identification and clustering, from epidemiological to genome-based detection of potential contaminants in farming and industry settings.


Assuntos
Escherichia coli , Gammaproteobacteria , Animais , Dickeya , Genômica , Agricultura
12.
Mol Plant Pathol ; 24(12): 1480-1494, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37740253

RESUMO

The zeamines produced by Dickeya oryzae are potent polyamine antibiotics and phytotoxins that are essential for bacterial virulence. We recently showed that the RND efflux pump DesABC in D. oryzae confers partial resistance to zeamines. To fully elucidate the bacterial self-protection mechanisms, in this study we used transposon mutagenesis to identify the genes encoding proteins involved in zeamine resistance in D. oryzae EC1. This led to the identification of a seven-gene operon, arnEC1 , that encodes enzyme homologues associated with lipopolysaccharide modification. Deletion of the arnEC1 genes in strain EC1 compromised its zeamine resistance 8- to 16-fold. Further deletion of the des gene in the arnEC1 mutant background reduced zeamine resistance to a level similar to that of the zeamine-sensitive Escherichia coli DH5α. Intriguingly, the arnEC1 mutants showed varied bacterial virulence on rice, potato, and Chinese cabbage. Further analyses demonstrated that ArnBCATEC1 are involved in maintenance of the bacterial nonmucoid morphotype by repressing the expression of capsular polysaccharide genes and that ArnBEC1 is a bacterial virulence determinant, influencing transcriptional expression of over 650 genes and playing a key role in modulating bacterial motility and virulence. Taken together, these findings decipher a novel zeamine resistance mechanism in D. oryzae and document new roles of the Arn enzymes in modulation of bacterial physiology and virulence.


Assuntos
Dickeya , Oryza , Dickeya/metabolismo , Virulência/genética , Enterobacteriaceae/genética , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Poliaminas/metabolismo , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oryza/microbiologia , Regulação Bacteriana da Expressão Gênica
13.
PLoS Genet ; 19(4): e1010725, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37104544

RESUMO

The necrotrophic plant pathogenic bacterium Dickeya solani emerged in the potato agrosystem in Europe. All isolated strains of D. solani contain several large polyketide synthase/non-ribosomal peptide synthetase (PKS/NRPS) gene clusters. Analogy with genes described in other bacteria suggests that the clusters ooc and zms are involved in the production of secondary metabolites of the oocydin and zeamine families, respectively. A third cluster named sol was recently shown to produce an antifungal molecule. In this study, we constructed mutants impaired in each of the three secondary metabolite clusters sol, ooc, and zms to compare first the phenotype of the D. solani wild-type strain D s0432-1 with its associated mutants. We demonstrated the antimicrobial functions of these three PKS/NRPS clusters against bacteria, yeasts or fungi. The cluster sol, conserved in several other Dickeya species, produces a secondary metabolite inhibiting yeasts. Phenotyping and comparative genomics of different D. solani wild-type isolates revealed that the small regulatory RNA ArcZ plays a major role in the control of the clusters sol and zms. A single-point mutation, conserved in some Dickeya wild-type strains, including the D. solani type strain IPO 2222, impairs the ArcZ function by affecting its processing into an active form.


Assuntos
Peptídeos Antimicrobianos , Família Multigênica , Mutação Puntual , Família Multigênica/genética , Genômica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Policetídeo Sintases/genética , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Ascomicetos/efeitos dos fármacos , Dickeya/genética , Dickeya/metabolismo , Regulação Bacteriana da Expressão Gênica/genética
14.
Trends Microbiol ; 31(10): 1085-1086, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36958995
15.
Sci Rep ; 12(1): 19193, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357509

RESUMO

Dickeya fangzhongdai, a bacterial pathogen of taro (Colocasia esculenta), onion (Allium sp.), and several species in the orchid family (Orchidaceae) causes soft rot and bleeding canker diseases. No field-deployable diagnostic tool is available for specific detection of this pathogen in different plant tissues. Therefore, we developed a field-deployable loop-mediated isothermal amplification (LAMP) assay using a unique genomic region, present exclusively in D. fangzhongdai. Multiple genomes of D. fangzhongdai, and other species of Dickeya, Pectobacterium and unrelated genera were used for comparative genomic analyses to identify an exclusive and conserved target sequence from the major facilitator superfamily (MFS) transporter gene region. This gene region had broad detection capability for D. fangzhongdai and thus was used to design primers for endpoint PCR and LAMP assays. In-silico validation showed high specificity with D. fangzhongdai genome sequences available in the NCBI GenBank genome database as well as the in-house sequenced genome. The specificity of the LAMP assay was determined with 96 strains that included all Dickeya species and Pectobacterium species as well as other closely related genera and 5 hosts; no false positives or false negatives were detected. The detection limit of the assay was determined by performing four sensitivity assays with tenfold serially diluted purified genomic DNA of D. fangzhongdai with and without the presence of crude host extract (taro, orchid, and onion). The detection limit for all sensitivity assays was 100 fg (18-20 genome copies) with no negative interference by host crude extracts. The assays were performed by five independent operators (blind test) and on three instruments (Rotor-Gene, thermocycler and dry bath); the assay results were concordant. The assay consistently detected the target pathogen from artificially inoculated and naturally infected host samples. The developed assay is highly specific for D. fangzhongdai and has applications in routine diagnostics, phytosanitary and seed certification programs, and epidemiological studies.


Assuntos
Orchidaceae , Pectobacterium , Dickeya , Técnicas de Amplificação de Ácido Nucleico/métodos , Genômica , Enterobacteriaceae/genética , Pectobacterium/genética , Orchidaceae/genética , Sensibilidade e Especificidade
16.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361548

RESUMO

Dickeya is a major and typical member of soft rot Pectobacteriaceae (SRP) with a wide range of plant hosts worldwide. Previous studies have identified D. zeae as the causal agent of banana soft rot disease in China. In 2017, we obtained banana soft rot pathogen strain FZ06 from the Philippines. Genome sequencing and analysis indicated that FZ06 can be classified as D. dadantii and represents a novel subspecies of D. dadantii, which we propose to name as subsp. paradisiaca. Compared with Chinese banana soft rot pathogenic strain D. zeae MS2, strain FZ06 has a similar host range but different virulence; FZ06 is significantly less virulent to banana and potato but more virulent to Chinese cabbage and onion. Characterization of virulence factors revealed obviously less production of pectate lyases (Pels), polygalacturonases (Pehs), proteases (Prts), and extrapolysaccharides (EPSs), as well as lower swimming and swarming motility and biofilm formation in strain FZ06. Genomic comparison of the two strains revealed five extra gene clusters in FZ06, including one Stt-type T2SS, three T4SSs, and one T4P. Expression of cell wall degrading enzyme (CWDE)-encoding genes is significantly lower in FZ06 than in MS2.


Assuntos
Gammaproteobacteria , Musa , Dickeya , Filipinas , Virulência/genética , Doenças das Plantas
17.
Microbiol Res ; 263: 127147, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35914414

RESUMO

A variety of replication fork traps have recently been characterised in Enterobacterales, unveiling two different types of architecture. Of these, the degenerate type II fork traps are commonly found in Enterobacteriaceae such as Escherichia coli. The newly characterised type I fork traps are found almost exclusively outside Enterobacteriaceae within Enterobacterales and include several archetypes of possible ancestral architectures. Dickeya paradisiaca harbours a somewhat degenerate type I fork trap with a unique Ter1 adjacent to tus gene on one side of the circular chromosome and three putative Ter2-4 sites on the other side of the fork trap. The two innermost Ter1 and Ter2 sites are only separated by 18 kb, which is the shortest distance between two innermost Ter sites of any chromosomal fork trap identified so far. Of note, the dif site is located between these two sites, coinciding with a sharp GC-skew flip. Here we examined and compared the binding modalities of E. coli and D. paradisiaca Tus proteins for these Ter sites. Surprisingly, while Ter1-3 were functional, no significant Tus binding was observed for Ter4 even in low salt conditions, which is in stark contrast with the significant non-specific protein-DNA interactions that occur with E. coli Tus. Even more surprising was the finding that D. paradisiaca Tus has a relatively moderate binding affinity to double-stranded Ter while retaining an extremely high affinity to Ter-lock sequences. Our data revealed major differences in the salt resistance and stability between the D. paradisiaca and E. coli Tus protein complexes, suggesting that while Tus protein evolution can be quite flexible regarding the initial Ter binding step, it requires a highly stringent purifying selection for its final locked complex formation.


Assuntos
Replicação do DNA , Dickeya/metabolismo , Proteínas de Escherichia coli , Escherichia coli , Cromossomos/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo
18.
PLoS One ; 17(8): e0273481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36037153

RESUMO

Dickeya solani is a soft rot bacterium with high virulence. In potato, D. solani, like the other potato-infecting soft rot bacteria, causes rotting and wilting of the stems and rotting of tubers in the field and in storage. Latent, asymptomatic infections of potato tubers are common in harvested tubers, and if the storage conditions are not optimal, the latent infection turns into active rotting. We characterized potato gene expression in artificially inoculated tubers in nonsymptomatic, early infections 1 and 24 hours post-inoculation (hpi) and compared the results to the response in symptomatic tuber tissue 1 week (168 hpi) later with RNA-Seq. In the beginning of the infection, potato tubers expressed genes involved in the detection of the bacterium through pathogen-associated molecular patterns (PAMPs), which induced genes involved in PAMPs-triggered immunity, resistance, production of pathogenesis-related proteins, ROS, secondary metabolites and salicylic acid (SA) and jasmonic acid (JA) biosynthesis and signaling genes. In the symptomatic tuber tissue one week later, the PAMPs-triggered gene expression was downregulated, whereas primary metabolism was affected, most likely leading to free sugars fueling plant defense but possibly also aiding the growth of the pathogen. In the symptomatic tubers, pectic enzymes and cell wall-based defenses were activated. Measurement of hormone production revealed increased SA concentration and almost no JA in the asymptomatic tubers at the beginning of the infection and high level of JA and reduced SA in the symptomatic tubers one week later. These findings suggest that potato tubers rely on different defense strategies in the different phases of D. solani infection even when the infection takes place in fully susceptible plants incubated in conditions leading to rotting. These results support the idea that D. solani is a biotroph rather than a true necrotroph.


Assuntos
Solanum tuberosum , Dickeya , Enterobacteriaceae/genética , Expressão Gênica , Moléculas com Motivos Associados a Patógenos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas , Ácido Salicílico , Solanum tuberosum/microbiologia
19.
Mol Plant Pathol ; 23(10): 1487-1507, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35819797

RESUMO

Dickeya zeae is an aggressive bacterial phytopathogen that infects a wide range of host plants. It has been reported that integration host factor (IHF), a nucleoid-associated protein consisting of IHFα and IHFß subunits, regulates gene expression by influencing nucleoid structure and DNA bending. To define the role of IHF in the pathogenesis of D. zeae MS2, we deleted either and both of the IHF subunit encoding genes ihfA and ihfB, which significantly reduced the production of cell wall-degrading enzymes (CWDEs), an unknown novel phytotoxin and the virulence factor-modulating (VFM) quorum-sensing (QS) signal, cell motility, biofilm formation, and thereafter the infection ability towards both potato slices and banana seedlings. To characterize the regulatory pathways of IHF protein associated with virulence, IHF binding sites (consensus sequence 5'-WATCAANNNNTTR-3') were predicted and 272 binding sites were found throughout the genome. The expression of 110 tested genes was affected by IHF. Electrophoretic mobility shift assay (EMSA) showed direct interaction of IhfA protein with the promoters of vfmE, speA, pipR, fis, slyA, prtD, hrpL, hecB, hcp, indA, hdaA, flhD, pilT, gcpJ, arcA, arcB, and lysR. This study clarified the contribution of IHF in the pathogenic process of D. zeae by controlling the production of VFM and putrescine QS signals, phytotoxin, and indigoidine, the luxR-solo system, Fis, SlyA, and FlhD transcriptional regulators, and secretion systems from type I to type VI. Characterization of the regulatory networks of IHF in D. zeae provides a target for prevention and control of plant soft rot disease.


Assuntos
Dickeya , Enterobacteriaceae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dickeya/genética , Regulação Bacteriana da Expressão Gênica , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Virulência/genética , Fatores de Virulência/genética
20.
Water Res ; 220: 118724, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696807

RESUMO

Irrigation with surface water carrying plant pathogens poses a risk for agriculture. Managed aquifer recharge enhances fresh water availability while simultaneously it may reduce the risk of plant diseases by removal of pathogens during aquifer passage. We compared the transport of three plant pathogenic bacteria with Escherichia coli WR1 as reference strain in saturated laboratory column experiments filled with quartz sand, or sandy aquifer sediments. E. coli showed the highest removal, followed by Pectobacterium carotovorum, Dickeya solani and Ralstonia solanacearum. Bacterial and non-reactive tracer breakthrough curves were fitted with Hydrus-1D and compared with colloid filtration theory (CFT). Bacterial attachment to fine and medium aquifer sand under anoxic conditions was highest with attachment rates of max. katt1 = 765 day-1 and 355 day-1, respectively. Attachment was the least to quartz sand under oxic conditions (katt1 = 61 day-1). In CFT, sticking efficiencies were higher in aquifer than in quartz sand but there was no differentiation between fine and medium aquifer sand. Overall removal ranged between < 6.8 log10 m-1 in quartz and up to 40 log10 m-1 in fine aquifer sand. Oxygenation of the anoxic aquifer sediments for two weeks with oxic influent water decreased the removal. The results highlight the potential of natural sand filtration to sufficiently remove plant pathogenic bacteria during aquifer storage.


Assuntos
Filtração , Água Subterrânea , Quartzo , Dickeya/isolamento & purificação , Escherichia coli , Filtração/métodos , Sedimentos Geológicos , Água Subterrânea/microbiologia , Pectobacterium carotovorum/isolamento & purificação , Ralstonia solanacearum/isolamento & purificação , Areia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...